
CS-doc-????

FIFE Architecture
Committee Report

Liz Buckley-Geer, Glenn Cooper, David Dykstra, Stu Fuess, Oliver Gutsche,

Burt Holzman, Dmitry Litvintsev, Adam Lyon, Igor Mandrichenko, Ray Pasetes,

Andy Romero and Stephan Lammel

July 29th
, 2013

version 1.00

The FabrIc for Frontier Experiments, FIFE, project of the Scientific Computing Division of Fermilab
provides collaborative scientific-data processing solutions to Intensity Frontier and Cosmic Frontier experiments
at Fermilab. An integrated offline computing environment, shared by many experiments, requires a robust and
scalable underlying computing architecture for lasting success.

Computing needs of the first Fermilab neutrino experiments were relatively small and addressed with
emphasis on user convenience. There are more Intensity Frontier experiments now, the data volume of each
experiment is larger and their computing needs have brought components to their scalability limits. A recent
estimate of future computing needs of the experiments shows the need to potentially quadruple current FIFE
computing resources.

The scientific computing division head set up a committee the beginning of March 2013 to review and

amend the architecture for frontier experiments at Fermilab. The committee reviewed the current computing

setup, future needs and anticipated technology advances, it discussed components and their relationship of a

possible future architecture and it looked at scalability and dependencies. This is the report of the committee.

1



Executive Summary

The current FIFE compute system has so far enabled the experiments to execute the planned
scientific program. However, some components are at their scalability limit; the setup has
become fragile and needs to be revised.

The envisioned architecture of the FIFE offline compute system is designed to enable physi-
cists to efficiently develop software, generate events, simulate detector responses, reconstruct
physics quantities, select events and analyze data at Fermilab and also from off-site. The
architecture is

• network centric, i.e. an Internet Protocol network binds the components into a system
and thus equalizes naturally on-site and off-site activities; is

• modular, i.e. switching the implementation of a component will keep the overall ar-
chitecture intact and thus bring longevity across technology updates; is

• scalable, i.e. allows data/CPU intensive components to be implemented as distributed
services; is

• fault stable, i.e. components have minimal inter-dependency and maximum isolation
so failures will stay contained and not escalate to unrelated components/services.

The architecture can be implemented with current technology. Many components exist al-
ready in the current FIFE computing setup. The committee believes with a few but significant
changes the current system can be evolved to a robust, scalable, and fault tolerant system
that can serve experiments for a long time.

Central network attached storage, NAS, should not be used to store scientific data, and
direct access from the large number of worker nodes should be eliminated. Scientific data
should be stored in the mass storage system and accessed through the distributed disk cache
system via a data handling layer. For the conceptual design Enstore, dcache and SAM-Lite
were chosen as implementation.
Services should be made independent of the central NAS as much as possible.

Grid computing facilities on-site and off-site provide the computing power for all data pro-
cessing, selection and analysis. They are accessed via a batch/job submission service that is
based on a pilot/glide-in system.

The committee sees an urgent need to upgrade the central user/account information with
experiment membership information.

Database read access should be tiered. We recommend SCD to design and write the database
schema and abstraction with the experiments for maximum cacheability and to hide the
database implementation.

The committee sees opportunities at both handling of user generated scientific data and
experimental software to improve the analysis experience of users. A dcache based user data
storage/project space is part of the conceptual design. Experiment software builds are moved
from the interactive GPCF machines to a dedicated build system where a large number of
processors can be used to build software releases in parallel. Experiment and support software
is then distributed and accessed on-/off-site, interactively and in batch via CVMFS.

2



1 Introduction

The scientific research program of Fermilab includes an increasing number of neutrino and rare
decay experiments at the Intensity Frontier, IF, and experiments to probe dark matter/energy at the
Cosmic Frontier, CF. While on average those experiments are of smaller scale than Energy Frontier,
EF, experiments their total computing needs start to match those of individual EF experiments.

Most of the IF and CF experiments have small offline computing groups, limited manpower, and
limited expertise they can devote to computing infrastructure. The Scientific Computing Division,
SCD, of Fermilab is providing more complete solutions, like data processing and analysis frameworks
and a fabric of integrated services [1] to help the experiments manage, process and analyze their
data. This reduces the required offline computing effort for the experiments, brings naturally more
sharing but also coupling of experiments. Software features and bugs are not limited to an individual
experiment, maintenance downtimes need broad coordination and service outages can have a wider
spread impact. This leads to a demand for higher quality and reliability.

A few years ago Fermilab Computing Division set up a general purpose compute facility, GPCF,
(for both interactive and batch computing) and a Grid [2] compute farm, GP-farm. The setups were
evolutions from previous clusters/farms. Both, GPCF and GP-farm, have been very successful. The
GP-farm is an Open Science Grid, OSG [3], facility but looks to Fermilab experiments more like
the GPCF batch system than a Grid facility: Experiment filesystems are mounted over the network
on the worker nodes. The central Network Attached Storage, NAS, service is provided by a high-
performance NFS appliance, a BlueArc Titan. The steady increases in disk capacity (and decreases
in storage costs) allowed the experiments to store all their scientific data there. Data are accessible at
all times from anywhere inside Fermilab and made the usage of GPCF and GP-farm very convenient.
The setup worked well while both scientific data and GP-farm were small. As the GP-farm grew, the
probability of jobs simultaneously accessing the NAS filesystems (and thus temporarily overloading
the I/O capacity of the NAS server) increased. The first experiments overcame those peak collisions
with a simple throttling and queuing mechanism. With the increased number of experiments and an
influx of new users, the accidental temporary overloads have become common. In case when the I/O
capacity of the NAS server is reached not one or two but all of its filesystems become unresponsive
and the impact is widespread [4].

The good network at Fermilab, the high-performance and attractive storage cost of the BlueArc
and the possibility to mount filesystems anywhere as needed without advanced planning triggered a
broad adaptation. Various scientific services use the central NAS heavily.

Neutrino, rare decay and dark matter search experiments have typical particle physics data and
workflows: large number of independent events or spills in files are being processed, filtered/grouped
and analysed. For the Dark Energy Survey, DES, and other experiments with imaging-type data, files
do not consist of independent elements but the complete image data file is needed for processing and
images are analysed individually. The architecture presented here was developed for computing tasks
of both types. However, experiments with imaging-type data may require additional data handling
features beyond what has been considered here.

Architecture, the art of building, is commonly done in three phases: (1) planning, i.e. thinking
through needs, usage and forecasting changes; (2) designing, i.e. creating the architectural blueprint;
and (3) construction, i.e. building the components and assembling the structure. In computer science,
architecture specifies the components and their relationships. For this report we start with the
computer science definition: guiding principles of the architecture, components and their relations.
In a second part we provide a conceptual design of a possible FIFE offline computing system based
on this architecture.

3



2 Design Considerations

The envisioned architecture of the FIFE offline compute system is designed to enable physicists to effi-
ciently develop software, generate events, simulate detector responses, reconstruct physics quantities,
select events and analyze data at Fermilab and from off-site. The architecture is

• network centric, i.e. an Internet Protocol, IP, network binds the components into a system
and thus equalizes naturally on-site and off-site activities;

• modular, i.e. replacing a component will keep the overall architecture intact and thus bring
longevity across technology updates;

• scalable, i.e. allows data/CPU intensive components to be implemented as distributed services;

• fault stable1, i.e. components have minimal inter-dependency and maximum isolation so fail-
ures will stay contained and not escalate to unrelated components/services.

The users and user programs interact with a few high-level services from the interactive servers,
desktops, laptops and batch worker nodes at Fermilab and off-site. The high-level services combine
the lower level computing software and services into scientific services that each address a particular
task or functionality. As the result, the users need to learn less about computing components,
and computer scientist and engineers can design and implement robust, scalable and cost-effective
solutions.

3 FIFE Architecture

In this section 3 we describe the FIFE offline computing architecture components and their relations.
The following section 4 provides a specific example of the implementation of this architecture.

The current architecture of the FIFE compute system has served the IF experiments well so far,
even considering the instability during the last year due to accidental user overloads of the central
NAS service.

Future IF and CF computing requirements are not fully defined. This was a bit of a challenge
for the committee. The estimates of computing resource needs are taken from the 2013 Scientific
Project Portfolio Management review [5]. The detailed requirements for batch computing are taken
from [6]. Each committee member contributed requirements and usage information in their field
of expertise or based on experience from current and past experiments. Over the next three to
five years the committee does not expect revolutionary computing changes or disruptive innovations
but evolutionary computing changes and incremental technology updates. The FIFE architecture will
allow for technology updates and will consist of components with well defined functions and interfaces
that remain valid in case of an implementation switch. The committee expects a reduced support
for customized solutions and a significant need of IF and CF experiments to use other academic, i.e.
opportunistic, and potentially commercial computing resources outside of Fermilab.

At the higest level there are five groups of components that a user sees: interactive computing,
batch computing, storage, software and databases. Figure 1 shows the five groups and their relation-
ships. The interactive computing acesses storage for management and development/testing/debugging.

1Fault stable here means that in case of a failure only the component/service and its dependent components may be
interrupted. Fault-tolerant implementations, i.e. where the service itself stays uninterrupted, are prefered.

4



off−site
servers

laptops

and

desktop

computing

Interactive Computing

worker nodes
w

e
b

 c
a

ch
in

g

batch submission

pilot / glide−in

off−site
FermiGrid

Grid & Cloud

Batch Computing

storage

data

user D
ata H

andling (D
H

)experiment

data storage

Databases
scientific

management

database
caching

web
database

Storage

Software

frameworks

support
softwaresoftware

experiment
software

user

web caching

build system

DH

(DB)

DB

Figure 1: High level user view of the components grouped into interactive computing, batch comput-
ing, storage, software and database groups.

The storage system is accessed predominantly by batch computing. Batch jobs are prepared and sub-
mitted from the interactive computing and they require access software (libraries) and database
information. The access to database and software is also required for interactive computing and
is updated/managed from there. The software comprises of analysis software, experiment software,
support software, the frameworks with data handling and database interfaces, the system to build
libraries and executables, and the system to distribute those files to interactive and batch computing.

The envisioned architecture of the FIFE compute system starts from the current architecture
but splits handling of scientific data into several new components based on positive Tevatron and
LHC experience. The users and user jobs utilize a data handling system that provides access to user
and experiment data stored in the storage components and that provides metadata management.
Figure 2 shows all the components of the architecture. The components are layered with well defined,
hierarchical relations. Each component addresses a specific task. The components in the lower layers
fulfill more basic functions, and components in the higher layers (using components in the lower
layers) will provide more complex services. When combined, the system will enable experiments
to develop their software, generate events, simulate detector responses, process and select data and
analyze them efficiently.

The overall architecture is network centric. The IP network with its core services provides the

5



user home

areas

authenication service

network (including basic network services like time, DNS, etc.) central SAN

database

management storage

data

experiment

web caching

central NAS

build

system

user

data

storageinfo

account

user /

database

scientific

job

user
user

experiment

& support

software

Grid

service

Fermi

glide−in

system

pilot /

handling

data

servers

interactive

laptops

and

desktop

nodes

worker

FermiGrid

submission

batch / job

VM Service

dedicated

Cloud

purpose

general

nodes

worker

off−site

computing

interactive

off−site

Cloud

Grid or

off−site

top component uses lower component

top component may use lower comp.

top component manages/interacts with

Figure 2: Components of the FIFE architecture organized in layers and with relations of the high-level
components shown. Components depend only on components in lower layers.

lowest layer and binds most components. Scientific data flows over the network to the interactive and
batch nodes that process and analyze the data. Virtual Machine, VM, cloud, storage and database
services are in the second layer. We envision most services to be VM based (and test instances of them
cloud based) in the future. The central VM service for scientific computing needs to be extremely
robust and should have multiple partitions (within the same cluster or multiple independent instances)
for the various service groups2. The storage and databases are less likely to become virtualized (except
for administrative nodes, testing instances, archival, etc.) and, if virtualized, will likely use dedicated,
vendor-recommended virtualization, i.e. internal to the component. The main scientific services are
realized in the next two layers: user information and scientific database management services, software
support, data handling and batch/job submission service. Interactive and batch computing will be the
customers of the scientific services. With the IP network being the mortar/glue of the architecture,
the inclusion of resources located off-site becomes natural. For this, the component interfaces need
to be designed with the Wide Area Network, WAN, in mind and to be scalable to high load and high

2Multiple partitions means locating independent services on different hardware, i.e. different physical servers and
SAN storage, so they stay independent. A failure of a server impacts then only services of one group. The GPCF and
CDF VM clusters are one current such example.

6



latency, i.e. need to be Grid ready.

3.1 Network

The current IP network at Fermilab is of modern modular design with core, distribution and access
layer. The data center module in the distribution layer provides the backbone for the scientific data
flow in the six computer rooms of the Feynman, Grid and Lattice Computing Centers. It is currently
implemented via four interconnected Nexus 7010. Most access layer switches uplink to two of the
Nexus. The setup has been robust and reliable. The network bandwidth was specified for the final
stage of Tevatron Run II experiments, i.e. has sufficient capacity to handle IF and CF needs over the
next few years. The architecture scales with Ethernet physical layer technology upgrades.

Locating dependent components/services in close proximity on the network is a good practice.
This includes both physical, i.e. connection on the same switch, and address space location, i.e.
same Virtual Local Area Network, VLAN. However, at Fermilab considerations of space, cooling and
electrical power in the computer rooms may take precedence over reduced network dependency when
deciding on its physical location.

Similar proximity considerations apply to network services (VLAN routers, Domain Name Service,
DNS, time service, etc.) or their secondary/slave servers.

3.2 Authentication

In the late 90s Fermilab decided to use Kerberos to protect access to network services. The authenti-
cation service is still used for all interactive access. For non-interactive access public key certificates
are also used and the de-facto standard to access Grid resources.

The committee expects public key certificate based authentication to expand further. New ser-
vices, access methods and protocols developed in the Fermilab Computing Sector should include
public key certificate access. With Kerberos tickets easily convertible into X509 certificates (signed
by the Key Distribution Center, KDC) the committee sees no need to change the current setup.

User requirements call for a single sign-on. With the login service at Fermilab being Kerberos
based, the client commands and utilities need to accept Kerberos tickets and should derive public
key certificates as needed.

3.3 Central SAN

The central storage area network is very robust and reliable, like the IP network. It is a simple fabric
with two redundant Fibre Channel, FC, switches at the core. The setup should be kept simple3.

The infrastructure, i.e. the fabric/FC switches, should be sized generously to avoid any bottlenecks
as it is shared by all components and services using the central SAN and thus brings unwanted
coupling. On the storage side, i.e. the disk/RAID arrays, independent components/services should
be kept separate and should use different storage hardware. The committee feels that the extra money
this may cost is well worth the independence gained.

Similar proximity considerations as for the IP network apply.

3If a feature, connectivity or other needs would increase complexity of the central SAN one (or more) additional
instances should be considered.

7



3.4 Central NAS

The central network attached storage has been a great success and also the area of serious problems.
The central NAS provides filesystem based storage to other machines on the network. It uses the
central SAN for block-level storage.

Use of a standardized network filesystem enables distributed computing and a herogeneous com-
puting environment. This is important for scalability and allows implementation changes within the
overall architecture.

The storage of scientific data and storage necessary to host services4 should not be mixed. The
scientific data should be off-loaded from the central NAS. The committee feels that this could be a
multi-year project. Neutrino experiments that currently collect and analyze data will not want to
switch to a data handling system with different data access protocols. Services that don’t require
shared access to a common area should be decoupled from the central NAS.

The use (or decoupling) of central NAS in each of the components and services will be discussed
below together with each component/service.

3.5 Dedicated VM Service

Server virtualization decouples the application host machine from the physical hardware. It allows
isolating applications and/or to improve resource utilization, and reduces the number of physical
servers. I.e., it leads to a greener computing environment, increases uptime and provides good
support for disaster recovery.

Fermilab has used server virtualization for many years. The SCD operates several VM clusters
including GPCF and the one for FermiGrid services.

The committee envisions virtualization to be used by all services that don’t require large CPU/band-
width/memory resources or tight resource control. A disadvantage is that virtualization introduced
a new coupling of components/services. To minimize any adverse impact, the VM service must be
very robust. Multiple partitions (within the same cluster or multiple independent instances) should
be used to isolate unrelated and unconnected components/services. Disk space needed by the appli-
cations that require only local access, especially space for running services, should be based on the
central SAN. This will provide performance equivalent to the local disks of a server and will also not
couple the service internally to the IP network. The SAN storage, i.e. the RAID unit(s), should be
separate for each partition/instance.

3.6 General-Purpose Cloud Service

The servers that don’t need to run continuously or require frequent configuration changes are best
implemented dynamically, i.e. using a cloud service. The cloud service in this document means
infrastructure as a service, i.e. the most basic cloud services. The cloud service should also be used to
provision shared Grid worker node resources in case experiments require incompatible configurations.

The setup of the cloud service at Fermilab should follow industry lead on both hardware and
software side. This means that application storage space will come from the central NAS (even if
provided for block access). Using the leading cloud interfaces will facilitate the use of commercial
cloud services in the future.

4This includes interactive services to develop and test software, submit jobs, manage an experiment, analyze data
(other than the data itself) and publish results.

8



The committee recommends for Fermilab to complete development of an on-site cloud computing
strategy, specifying both level and quality of service, so that the service can be engineered and used
appropriately. The FermiCloud project is an encouraging first step toward cloud technology inside
Fermilab.

Both VM and Cloud service provision virtual machines. There is an opportunity to share man-
agement tools. In the future the VM service could also be realized as a special instance or partition
of the cloud service. The committee does not envision critical services to be cloud based at this time
but possibly in the future. Similar separate instance consideration as for VM service applies.

3.7 Off-site Grid/Cloud Service

There are many Grid sites around the world. Most computing resources of the particle physics com-
munity are available in Grid facilities. Universities participating in a Fermilab IF or CF experiment
may want to dedicate some of their Grid resources to FIFE. Most Grid sites allow opportunistic
use when the primary application is not running. Computing clouds can also be used to provision
additional Grid worker nodes on a temporary basis.

The committee envisions off-site Grid facilities, direct and cloud based, academic and commer-
cial, to become an ever more important component of FIFE resources. The off-site resources could
contribute close to half the CPU resources within a few years. Therefore the scientific applications
and services need to be Grid ready.

3.8 User Home Areas

The user home areas provide login space for the collaboration members and support people to store
source code, configuration files, analysis information and documentation. The same area should be
available on all interactive servers (and desktops). The committee feels that one area for all IF and
CF experiments is appropriate. While a separate, independent area for each experiment would reduce
experiment interconnection, the connection is considered small and most relevant when coordinating
maintenance. A significant fraction of users will also be in more than one experiment and want a
unified login area. In case experiments are grouped, multiple areas could become appropriate. The
committee is not aware of requirements from the experiments that would make sharing of a common
home area undesirable.

The user home areas should support a distributed, heterogeneous, changing environment. The
implementation must support user and also experiment access protections and user quotas. Those
should be used and set for each user. The area should be backed up daily (or at least a filesystem
snapshot taken). The user home areas are currently accessible off-site. The committee notes that
neither FIFE architecture nor experiments require this.

3.9 User/Account Information

At Fermilab the computer username of a person is allocated centrally, assigned a numeric user iden-
tification, uid, and recorded in a database. The database entries are used to create user accounts on
the computers, i.e. the password records on UNIX type operating systems. The records, however,
contain no password information as authentication is provided via Kerberos.

Experiment membership is set up at each computer and for the Grid in the Virtual Organization
Membership Service, VOMS, of the experiment or in the experiment group of the Fermilab VOMS.
Experiment membership on the computers are not well managed and often a relic of a user’s first
experiment.

9



The committee envisions Fermilab to upgrade its central user/account information system to
include experiment membership information. The system should allow experiments to manage this
membership directly. VOMS information should be based on the central user/account information
system. User home area location (based on cluster/home area service) should be integrated. Renewal
in case of expiration is an important aspect that should be well planned and implemented!

The user/account information should be served to computers on-site (and potentially trusted ones
off-site) via a distributed, tiered service to achieve the required scalability and robustness.

3.10 Database Management Service

The detector geometry, alignment, calibration and condition data of the experiments need to be
stored, potentially updated, managed and accessed by the data processing, simulation and/or analysis
jobs. Metadata and data flow status5 information from the data handling system have similar needs.
A database management system, DBMS, with support for transaction processing, live snapshots,
backup and replication is used by all larger experiments.

The database management service currently uses the central SAN for storage and is implemented
using both commercial and freeware DBMSs.

The committee sees no need for a change.

3.11 Scientific Database Service

The experiments need to read the geometry, alignment, calibration and conditions data to simulate,
reconstruct and analyze the scientific data. With many such jobs running simultaneously on the
Grid and each potentially being split into many sections executing in parallel, direct database access
is not an option6. Instead, a tiered service for read access is needed. The service should provide
one-to-many distribution and throttle peak access before it reaches the database.

Limited manpower and expertise of the IF and CF experiments makes it unrealistic to expect
from the experiments to design and implement their database schema and/or program efficiently in
Structured Query Language, SQL. Middleware providing an abstraction layer is needed. Such a layer
would also decouple experiments from the DBMS used in the database management service, i.e. allow
implementation switches without impacting the experiment’s offline software.

The database information is commonly accessed at the beginning of a job or a processing segment.
Especially during analysis, the processing segments can be small and the on-demand database access
can slow down execution if reading from the database has a significant latency [7]. When jobs run at
off-site Grid facilities, accessing a Fermilab resident database can lead to large inefficiencies. Caching
of the database information can help here if the lifetime of the database information is known a priori
and large compared to the time between accesses.

The committee envisions abstraction and tiering provided by a scientific database service. The
SCD should provide this middleware layer to the experiments. The committee understands that
the middleware will contain custom written code for each experiment but expects very substantial
sharing, i.e. this being a worthwhile investment in the direction of integrated services.

The experiments at Fermilab currently use services based on Apache/WSGI, CherryPy, Tom-
cat/Java Servlets [8] and the Frontier Distributed Database Caching system [9] for offline database

5In the Sequential Access Model, SAM, data handling system this would be the project status information.
6Direct database access might be feasable for an individual smaller experiment with well organized data and analysis.

However, with the database management service shared among the experiments and potentially other customers it will
lead to overloads as encountered by experiments that started with direct database access.

10



access. All use the HyperText Transfer Protocol, HTTP, and have a Representational State Transfer,
REST, style architecture.

The scientific database service will consist mainly of designing and building the offline database
access (and perhaps also the high level trigger access) of the experiments and operating the tiered
database access system (or the tier 0 of the system if the web cache service is used for the higher
tiers).

3.12 Experiment Data Storage

The scientific data of the experiments need to be stored for later processing and analysis, and preserved
for future research. The data of an experiment is not limited to the raw detector information acquired
by the online data acquisition system and the data of reconstructed physics quantities, but includes all
simulated, processed, selected or derived data generated by the experiment or one of its organizational
units. The storage system for the scientific data of experiments consists commonly of a mass storage
system and a disk cache component. The experiment data storage and worker nodes component
provide the computing resources for the data processing and analysis. The two components need
to be the most scalable. The experiment data storage should be decentralized, i.e. have distributed
components for receiving data for storage, serving stored data back to users and migrating data
between different storage media, to provide the necessary scalability and fault tolerance.

The users are not expected to interact directly with the experiment data storage system. Instead
the data will be stored and retrieved via the intermediate handling component. The direct access to
the storage system will be reserved for administration and data management.

The experimental data storage system does not depend on components other than networking
and authentication (outside the experimental data storage component itself). It should be kept this
way.

3.13 User Data Storage

The experiments typically divide their data into multiple primary datasets, either at the trigger level
or after processing. These datasets are often large; accessing them is slow and only a small subset is
needed for an analysis. Physicists select a secondary dataset applying rough selection criteria, study
it, and select refined subsets from it until the selected dataset is small enough to analyze quickly. The
selection process is paramount for effective analysis. Physicists need a convenient way to store those
secondary and tertiary datasets, i.e. have access to user data storage/project areas. The difference
of user data storage to experiment data storage is two fold: (1) most user data are of limited, short
lifetime while experiment data is normally persistent7 and (2) any decision about storage and removal
is made by an individual user (or small group).

The data rates from the user data storage system are expected to be significantly smaller than
from the experimental data storage system. The user programs are not expected to interact directly
with the user data storage system but via the data handling component. For development, debugging
and data management, the users may occasionally interact directly with the system.

7Processed experiment data is superseded infrequently by newer versions of processed data. Experiments often
recycle the storage media containing old versions of processed data.

11



3.14 Data Handling

The Tevatron Run II and LHC experiments use a middleware layer to store, manage and access their
data. The layer allows users to deal with physics datasets instead of lists of files. It eliminates the
need to specify physical location and access protocol for files inside programs and scripts that can
now use logical names and thus become storage service (and thus site) independent. The layer also
enables consistent error handling, retry, and failover to an alternate service or switching to a better
access protocol.

The committee envisions metadata of both user and experiment data to be stored and managed
in a data handling component. The software framework should be augmented to make this conve-
nient for individual users with frequent and repeated selections. The data handling component will
allow experiments to store metadata for files, group files into datasets, associate metadata with such
datasets, translate datasets into file lists, and translate filenames into physical location and access
information. It will interact with the user and experiment data storage systems to access files.

The experiments do not plan to distribute or replicate a significant amount of data to off-site
locations at this time. We expect home institutions to store selections, though. Off-site storage
locations need to be supported.

3.15 Processing and Analysis Framework

Processing and early-state analysis programs consist of experiment and user specific modules, classes
and functions, and common software. The framework integrates the various software components and
controls their execution. The software is written in a high-level computing language. This provides
a good balance between performance and productivity.

The subsequent analysis is shifted toward managed or interpreted programming languages and
scripting. A different analysis framework is used for this. Both frameworks can read the scientific
data and should have interfaces to the scientific database and data handling service.

The frameworks should foresee efficient multi-core support that is easy to use by non-expert
programmers.

The committee did not review the architecture of these frameworks or any other software.

3.16 Experiment and Support Software Access

Experiment and support software like the data handling package, scientific database software, etc.
need to be accessible on the machines executing the processing/analysis jobs and machines used for
development and management. Most of the data processing and analysis is based on tested, released
and stable software sets. The release intervals vary between days to several months. For development,
more unsettled software sets are used. These sets are commonly built nighly.

There is a large and ever increasing number of worker nodes. A distributed service is required
to provide access to this software. Worker nodes are geographically dispersed and the service should
thus be tiered to handle the high latency WAN without inefficiency. The web caching service can be
used for tiering.

3.17 Software Build System

The data processing and analysis jobs use executables and shared libraries. Those are either prebuilt
by the experiment or custom built by users. The compilation and linking of the high level computing
language into machine code is CPU and I/O intensive and if done sequentially can take hours.

12



The committee envisions a dedicated build system for each experiment to assemble and build
their software releases. There are significant CPU and time savings between incremental builds and
full builds. In case of a build failure, the software management team of the experiment needs to
examine the build attempt. It is thus best to preserve experiment build areas and not to reuse them
among experiments. The nightly development builds will be a more constant load and the system
must be specified for it. The building of stable releases will be a less-predictable, fluctuating and
likely day-time activity. Separate SAN storage (due to the significant I/O) and dedicated physical
servers (due to the high interface utilization) for the VMs (to time share between experiments and
for OS flexibility) should be used. Planning of the software build system started recently.

The build releases will be provided to the experiment and support software component for use on
interactive and batch machines.

User software builds will mostly be partial builds and done on the interactive machines.

3.18 Web Caching

Many services need a tiered architecture to distribute static information to worker nodes for cost-
effective scaling to thousands of clients and to avoid inefficiencies from the high-latency WAN net-
working. If the lifetime of the information is known, it can be cached8 and this off-loads the server
further.

The services that need tiering and/or caching but don’t have this feature built in have two
choices: (1) develop and build a dedicated tiered distribution layer or (2) develop an HTTP protocol
implementation and use the web cache service at each site to distribute static information. The
committee recommends the latter.

The web cache service has to be very robust as it serves multiple services. The lower levels should
also be over-proportioned to sustain failures and fall-throughs to them.

The service providers will interact with the web caching system to manage cached data of their
service.

3.19 FermiGrid

FermiGrid is the umbrella term used for the Grid compute farms and Grid site services of Fermilab.
In addition to the GP-farm there are CMS, CDF and D0 Grid farms. All of the farms use Open
Science Grid, OSG, middleware. A Grid farm, a.k.a. a Grid compute element, is a set of services
that provides access for Grid jobs to the local batch system running on a farm of worker nodes. For
FermiGrid some of the services are shared between the Grid farms.

FermiGrid services can be divided into two classes: (1) site and experiment services, i.e. SAZ,
GUMS, VOMS, squid [10], etc. and (2) farm services, i.e. condor services, squid9, etc. The two can
be separated and the latter ones be placed in close proximity to the worker nodes. Squid service could
be used for the web cache component above. The committee envisions FermiGrid to be a stand-alone
service and independent of the central NAS. Especially resource-light services should use the VM
service. Services used by multiple farms need to be robust.

8Caching here means caching for hours and days as oppose to the storing during tiered distribution which we assume
is in the range of seconds.

9Squid is listed here in both classes as it provides both site and farm caching service.

13



3.20 FermiGrid Worker Nodes

The worker nodes provide effectively all the CPU for the data processing and analysis jobs. They
belong to the Grid facility, i.e. FermiGrid or the off-site Grid service. We call them out here because
of their importance and also because of the architectural change involving them.

The committee envisions FermiGrid worker nodes to not use the central NAS service and to have
no tight coupling to other components except FermiGrid. Jobs on worker nodes should be kept isolated
as much as possible. Virtualizing worker nodes is not envisioned (except in the case of experiments
requiring incompatible configurations as described in Sec. 3.6). Grid middleware provisioning on
demand VMs on worker nodes would allow better isolation of jobs and provide more fexibility during
OS upgrades. If this becomes available in the future it should be considered.

3.21 Pilot Based / Glide-In System

The use of diverse Grid compute resources at many independent sites, which utilize various batch
systems, brings complexity to job scheduling and monitoring. As such it it not advisable to have the
user interact with the Grid site batch systems directly.

The committee envisions a pilot based submission system be used for FIFE job routing and
distribution. One or more glide-in systems will submit pilot jobs to the various Grid sites. When
scheduled, the pilot job validates the computing environment on the worker node and presents the
resource to the FIFE batch system that schedules a user job there. This allows applying experiment
resource quotas and user priorities uniformly across all Grid sites.

3.22 Batch / Job Submission

Users will interact with a batch/job submission service to run jobs on the computing Grid. The sub-
mission service accepts jobs from the users, prioritizes and schedules them, handles job configuration
input files, (i.e. parameter files, scripts, executables, etc.) applies resource quotas and throttling in
case of congestion, matches the job to a suitable worker node for execution, initiates experiment and
data handling specific initializations for the job, provides end-to-end job monitoring, and transfers
output log and status files10 back to the user. The committee recommends that experiments use the
service and not submit jobs directly to the Grid.

The batch submission system uses the pilot based glide-in system to acquire computing resources
on FermiGrid and off-site Grid facilities. It will use the web caching service to distribute job config-
uration input files and will interact with data handling and/or data storage services.

3.23 Interactive Servers

Most physicists’ time is spent on interactive computing, to develop software, assemble jobs, visualize,
analyze and manage data. The location of interactive computing is driven mainly by network latency
and support of computing platforms by experiments/applications. CPU is no longer a limiting factor.

The current approach of providing experiment-specific servers for interactive work is a good strat-
egy. The computing environment on the interactive servers should match closely the environment
encountered by batch jobs. Interactive servers will use the user home areas, batch submission and cen-
tral SAN for scratch space. Experiment and support software, data handling and scientific database

10Scientific data should be handled through the data handling component and will not be transfered by the batch
submission system.

14



access should all be identical to that of FermiGrid worker nodes. Access to the data storage compo-
nents for management and central NAS for special interactive areas11 is needed.

3.24 Desktops And Laptops

Desktop computing is playing a lesser role and its CPU contribution is no longer a vital analysis
contribution. Connectivity of the physicist remains important and with it mobility. As desktop usage
shifted to laptops during the past years, usage will shift to personal mobile devices in the future. Thin
clients and multi-platform support for interactive tools will be paramount for productivity.

Desktops and laptops will use the experiment and support software, scientific database, data
handling, batch submission, data storage and user home areas.

3.25 Off-Site Interactive Computers

Off-site interactive computing consists of servers and desktops at home institutions, laptops and per-
sonal mobile devices anywhere in the world. The computers should access experiment and support
software, the batch system, scientific databases and data handling in the same way as on-site com-
puters. For some devices and locations (without a web cache service) interactive work may be limited
to reduced functionality.

Good interactive working conditions at home institutions are paramount for successful collabora-
tive data analysis work. Fermilab needs to support its computing platform for off-site installation in
both physical and virtual machines.

3.26 User Job

User and experiment event generation, detector simulation, data processing, selection and analysis
jobs will execute on worker nodes and occasionally for debugging on interactive machines. The jobs
will use mainly the CPU of the worker node, the scientific database, the data handling, and the
experiment and support software components.

3.27 User

Scientists, engineers and administrators will use the interactive servers, desktops, laptops and off-site
computers to manage experiment data, develop software, and process and analyze data. They will
mainly use user home areas, the experiment and support software, batch submission, data handling
and scientific database components. Some users will also interact with the build system and the two
data storage components.

4 A Conceptual Design

The architecture described above can be implemented with current technology. Many components
exist already in the current FIFE computing setup. The conceptual design provided here is a possible
implementation of the architecture. The committee chose a design close to the current setup. For
new components or where current implementations did not meet the architecture/design criteria the
committee considered first existing Tevatron Run II and/or LHC solutions.

11Experiment management areas, user web areas, etc. are examples of such interactive areas.

15



worker nodes
sq

u
id

FIFE jobsub

glide−in WMS

off−site
FermiGrid

Grid & Cloud

Batch Computing

Software

ART / Root

dcache SA
M

−Lite

dcache

Enstore

Databases
web service

off−site
servers

laptops

and

desktop

computing

Interactive Computing

Storage
Frontier

(DB)

SAM

DB

user
software software

supportexperiment
software

build system, CVMFS

squid

Oracle

PostgreSQL
squid

Figure 3: High level user view of the five component groups with the implementation chosen for the
conceptual design.

Figure 3 shows the implementations selected for the major components for the conceptual design
grouped into the same five component groups as in Fig. 1.

The overall design considerations do not impact only the architecture but also the implementation.
For some components this is more important than for others. While the conceptual design shows one
possible implementation, some features/details are paramount and should be present in any chosen
implementation of the component.

The most significant changes with respect to the current setup are in the area of scientific data
handling. User and experiment data are no longer stored on the central NAS and accessed directly
from the large number of worker nodes. They are catalogued, managed and accessed via the data
handling layer.

Services will be made more independent and decoupled from each other, especially from the central
NAS.

To achieve the required scalability (after the bottleneck of scientific data access from the central
NAS is eliminated) several services will be upgraded to a tiered read access.

16



4.1 Central NAS

The central NAS currently serves many important functions for FIFE experiments and FermiGrid: It
holds and serves experiment and user data; it is used to distribute job configuration input files to the
FermiGrid worker nodes; it is used to collect job output log and status files; it serves experiment and
support software to interactive and FermiGrid worker nodes; it has the FermiGrid home areas; and
it provides Grid application space for the non-Fermilab experiment. Two BlueArc Titan instances,
one for core-IT applications and one for scientific applications, make the central NAS. All of FIFE
and FermiGrid filesystems are on the scientific instance.

In the conceptual design the BlueArc setup continues to provide the central NAS. However, the
functionality of the central NAS changes as outlined in the architecture section above to disentangle
components. User and experiment scientific data will be off-loaded as described in the sections below.
Job configuration input files will be collected in user or scratch space on the interactive machines and
handed to the batch/job submission system (that will distribute them to the worker nodes via the
tiered web cache setup). Job output log and status files will be collected as part of the batch/job
submission system and returned to the user. Experiment and support software will be accessed
via a caching system based on the web caching component as described below. FermiGrid home
areas for batch jobs should be migrated to local worker node disk space. Grid application space
for non-Fermilab experiments/VOs should be phased out (or provided internally by FermiGrid via a
dedicated, stand-alone NFS server).

In the conceptual design the central NAS will provide space for a cloud service, the user home
areas and experiment management areas. The machines providing cloud service and the interactive
machines using the user home and experiment management areas will have network interfaces of
similar I/O bandwidth as the central NAS. It is thus important to have host or user based I/O
quotas or scheduling priority to avoid unintended overloads from a single application.

The central NAS should always use a standard, widely-supported protocol like NFS or CIFS to
allow a heterogeneous computing environment and easy use/migration to new computing platforms.

4.2 Dedicated VM Service

In the conceptual design all components that don’t require large CPU, memory, or network bandwidth
resources or tight control over them will use the VM service. The VM service for central services
(i.e. user/account information, experiment and support software, build system, FermiGrid site and
experiment services, pilot/glide-in system, data handling, batch submission and interactive servers)
uses SAN based storage for both OS and application filesystems. For FermiGrid farm services (i.e.
condor services, squid, etc.) a VM service in close proximity to the worker nodes, using local storage,
is desirable.

4.3 User Home Areas

The current home area implementation is based on AFS, the filesystem of the Andrew Project. AFS
support is declining and Fermilab plans to phase out its AFS service. The most natural replacement
would be to base the home areas on the central NAS. Given the importance of interactive work the
home areas should not be hosted on the central NAS instance (or at least server) that serves scientific
data or is mounted on FermiGrid worker nodes. Using the core-IT central NAS instance or freeing
up one of the servers/heads of the scientific central NAS are then the options.

The home areas will be NFS mounted on interactive servers and other trusted hosts using protocol
v3. Desktop personal computers could also get access but via protocol v4 which provides additional

17



authentication and security. Off-site machines will not have access.
Implementations that provide host and/or user based I/O quotas or scheduling priority should be

considered for future upgrades when available. Interactive servers will be VM based with the physical
machines that host the VMs having a network interface as capable as the user home area server, i.e.
without I/O quotas the VMs could easily cause a server overload.

4.4 User/Account Information

Network Information Service, NIS, is the implementation used for user/account information service
for most SCD clusters. NIS setups at various sites have been replaced due to stronger security and
authentication requirements. With Fermilab having a separate, Kerberos based authentication service
this is no concern here.

In the conceptual design experiment membership is managed in the central user/account informa-
tion system and propagates from there to VOMS and cluster NISes. If this cannot be accomplished
promptly (as this is outside SCD’s responsibility), then SCD should consider enhancing the current
NIS based setup for FIFE.

The committee notes that account information services based on the Lightweight Directory Access
Protocol, LDAP, are gaining traction.

4.5 Scientific Database Service

In the conceptual design scientific databases use the squid service for tiered read access of static
information. The database interface for each experiment, current and future, is designed professionally
to hide DBMS implementation and maximize cacheability.

4.6 Experiment Data Storage

In the conceptual design all the scientific data of the experiments are stored in Enstore [11] and
accessed via dCache [12]. The general purpose dCache and Enstore instances are used for this. Both
have been running successfully for many years. To replace the central NAS with dCache the size of
the disk cache and the number of pool servers needs to be upgraded. The Tevatron Run II and CMS
experiences with the system has been very good. Both CDF and CMS experiments have production
tested the system to the scalability that FIFE needs. The current dCache setup should be augmented
with an xrootd layer, especially for off-site data access. Enhancing dCache to a more dynamic access
throttling, as to its current static mover protocol limits, is desirable.

4.7 User Data Storage

The conceptual design uses a resilient dCache to implement the user data storage component. The
experiment data storage uses dCache already and the additional resilient instance is thus the most
simple and manpower/cost-effective implementation. User quotas are currently being implemented
and are paramount to a successful, i.e. managable and low-maintenance, setup.

The NFS v4 support of dcache allows the user data storage to be mounted directly and files
accessed via standard Linux commands and APIs. The conceptual design makes use of this for inter-
active servers. This allows convenient data access for management, development and to test/debug
new programs.

If NFS becomes the protocol of choice for the on-site data handling based access then worker nodes
should be setup such that direct access without going through the data handling layer is blocked.

18



Without such a blocking FermiGrid worker nodes would become “special” again and the on-site versus
off-site equality broken.

4.8 Data Handling

The implementation of the data handling component in the conceptual design uses SAM-Lite, a
simplified version of SAM [13]. The SAM to dcache interface is currently being upgraded to include
cache file inventory information and will then provide a more efficient data flow when processing a
large number of files. Enhancing SAM to automatically select between dcache access protocols based
on file read patterns and job location would be desirable. SAM services are mature and have been
robust. With additional SAM-Lite development and more sharing among experiments it could be
worthwhile to make the services redundant.

The ART framework has already a SAM interface. A SAM interface needs to be written for the
Root framework. SAM-Lite should also be upgraded so frequently accessed static information can
be read via HTTP, can be cached and can use the tiered squid service. The interface to declare and
store new files, both for user and experiment storage, should be reviewed for convenience.

4.9 Experiment and Support Software Access

CERN developed a filesystem, CVMFS [14], as part of their virtual analysis environment for LHC
data processing and analysis, CernVM [15]. For ready-only, quasi-static filesystems CVMFS solves the
problem that a very large number of clients/worker nodes present to a central file server. Experiment
and support software is the ideal application for CVMFS and CVMFS the natural choice for the
FIFE implementation of it. The first IF experiments have already begun to test it.

CVMFS will use the squid-based web caching service described below.

4.10 Software Build System

The most simple, cost-effective and yet upgradable implementation for the build system would be
one (or more) large multi-core server(s) with virtual machines for each platform and experiment,
dedicated storage on the central SAN and scheduled nightly build slots. The VMs should have many
cores and large memory to allow for quick, O(15 min), software builds. The server(s) hosting the
VMs should have two or more times as many cores as the largest VM. The machine(s) need to be
dedicated as the FC interface to the SAN is expected to be quite busy. The server(s) will be heavily
over-subscribed. This will not be a problem as (1) nightly rebuilds have time slots, (2) stable releases
are built less predictably but also less frequently during the day, (3) the server could support two or
more builds simultaneously and (4) an overload would not be fatal but result in slower builds. The
SAN storage will provide the good I/O performance required and allow the storage to be persistent,
i.e. enable builds to be faster update-builds. The final step of the software build is publishing the
version to CVMFS.

A first prototype software build system was recently setup for Nova.

4.11 Web Caching

The web cache can be implemented easily with existing and additional squid servers. The conceptual
design has a two layer hierarchy: The first layer is made up of a redundant, over-specified squid

19



service12 to shield services on Fermilab site from excessive read access. One or more squid servers
per FermiGrid farm, preferably in the same VLAN/on the same switch, make the second layer.

nodes

worker

GP−farm

nodes

worker

farm X

computing

interactive

off−site

nodes

worker

off−site

service

off−site

experiment

& support

softwarehandling

data
database

scientific

laptops

and

desktop

servers

interactive

redundant squid

one or more

squids

one or more

squids

submission

batch / job

one or more

off−site squidssquid

Figure 4: Web caching implementation in the conceptual design.

4.12 FermiGrid

In the conceptual design the FermiGrid site and experiment services are virtualized and have redun-
dant setup. Non-Fermilab experiments/VOs will be encouraged to use CVMFS service provided by
OSG and application space on the central NAS phased out13. FermiGrid services will no longer use
the central NAS. The redundant squid service becomes the shield around on-site services and part of
the web caching service.

FermiGrid farms will be free-standing with all the farm specific services in close proximity to the
worker nodes (including one or more squid server for the farm). The GP-farm will provide single-
core slots and multi-core slots to enable and encourage multi-threaded programming by experiments.
Multiple GP-farms will allow for less-interruptive upgrades and configuration changes.

4.13 FermiGrid Worker Nodes

GP-farm worker nodes have no more central NAS mounts. They have separate, standardized, local
scratch space for each job, local CVMFS cache, use assigned uids and correct gids for jobs or uid
pools for unregistered users.

12This squid could be setup in reverse proxy configuration or webserver acceleration, i.e. serve any clients for a limited
number of web servers.

13If there are agreements or other reasons preventing application space from being abolished, it should become a
FermiGrid internal service so there are no central NAS mounts on worker nodes and any overloads by worker nodes are
contained.

20



4.14 Pilot Based / Glide-In System

The conceptual design uses the glide-in WMS [16] system based on HTCondor [17] to route jobs to
appropriate, available compute resources. OSG operates glide-in WMS factories in two locations,
the University of California at San Diego, UCSD, and Indiana University, IU. Using them to access
off-site Grid resources will save operations and support effort. A redundant glide-in WMS factory
service at Fermilab is needed for robustness, considering the large on-site computing resources14. In
addition to the factory, glide-in WMS front-ends are required for each experiment/VO. A redundant
service should be setup with FIFE experiment/VOs sharing the front-end setup.

4.15 Batch Submission

The batch submission system in the conceptual design uses HTCondor [17] with a client-server wrap-
per [18] for user convenience and to hide condor implementation details. The jobsub wrappers of the
IF experiments are currently being rewritten to add requested features (like saving and transfering
input configuration files to worker nodes and handling output log and status files) and to reorganize
it into an easy to install, OSG and condor independent command for users and a server that interacts
with glide-in WMS and Grid sites/middleware.

FIFE jobsub supports common workflows of particle physics and has an interface to SAM. An
interface to dcache should be added so disk cache congestion can be considered in the scheduling.
Buffer space for output log and status files should be set up.

4.16 Interactive Servers

The current GPCF experiment-specific servers work well for the experiments. In the conceptual
design users will build executables and assemble jobs on the interactive machines in “local” scratch
space that comes from the central SAN. With the space no longer being shared among interactive
servers of an experiment, it is thus desirable to have fewer and larger VMs per platform/OS version
(versus the many small VMs in GPCF currently). This will simplify user login load balancing too.
Scratch space should have user quotas and can be oversubscribed if regularly cleaned up.

A separate VLAN for interactive work (servers, user home areas, etc.) should be considered to
allow easy prioritization/quality or service separation in the future.

4.17 User

Users will declare all scientific data to SAM.

5 Summary

The current FIFE compute system has so far allowed the experiments to execute the planned scientific
program. The system has reached its scalability limit and the coupling through the central NAS has
made it fragile during the last year. The envisioned architecture decouples components, is modular
and brings back scalability. The architecture can be implemented evolving the current setup and
with existing technologies. Migrating experiment data access to go through a data handling layer
and setup of a high-performance distributed cache disk based storage component should have highest

14Fermilab may want to negotiate with OSG to operate the on-site glide-in WMS factories as part of the Grid
Operations Center.

21



priority. SCD should design and write the database layer for experiments. Ongoing SAM-Lite and
FIFE jobsub developments should be completed quickly and assistance provided to experiments to
adopt them.

References

[1] M. Kirby et al., FabrIc for Frontier Experiments, FIFE,
https://sharepoint.fnal.gov/org/scd/fife/SitePages/Home.aspx

[2] Grid computing federates computing resources in multiple locations via the Internet to work on
a common problem as if they were a single powerful computer.
F. Berman, G. Fox and A. J.G. Hey (editors), Grid Computing: Making the Global Infrastructure
a Reality, John Wiley & Sons, (2003).

[3] The Open Science Grid Consortium is an organization that develops software, provides services
and operates a worldwide Grid of computing resources for scientific research, called the Open
Science Grid, http://www.opensciencegrid.org/.

[4] K. Chadwick et al., Continued User Overloads of Central NAS Service, CS-doc-4995 (2013),
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4995.

[5] B. Boroski et al., Scientific Computing Project Portfolio Management 2013 Review,
https://sharepoint.fnal.gov/project/sppm/SitePages/Home.aspx

[6] M. Kirby and St. Lammel, Requirements for the Batch Submission System for Frontier Experi-
ments, CS-doc-5115 (2013), http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5115.

[7] I. Mandrichenko, FIFE Architecture and Scientific Databases, CS-doc-5156 (2013), http://cd-
docdb.fnal.gov/cgi-bin/ShowDocument?docid=5156

[8] I. Mandrichenko, Redundant Web Services Infrastructure for High Performance Data Access,
CS-doc-5081 (2013), http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5081.

[9] The Frontier distributed database caching system distributes data from central databases
to many clients around the world. The name comes from “N Tier” where N is any num-
ber and tiers are layers of locations of distribution. More information can be found at
https://cdcvs.fnal.gov/redmine/projects/fermitools/wiki/Frontier and http://frontier.cern.ch/.

[10] Squid is a proxy server and web cache service, http://www.squid-cache.org/.

[11] Enstore is the mass storage system implemented at Fermilab as the primary data store for large
data sets, http://www-ccf.fnal.gov/enstore/.

[12] dCache is a system for storing and retrieving huge amounts of data, distributed among a large
number of heterogenous server nodes, under a single virtual filesystem tree with a variety of
standard access methods. More information can be found at http://www.dcache.org/.

[13] The Sequential Access Model, SAM, is data handling software originally designed for Run II of
the D0 experiment at the Fermilab Tevatron, http://d0dbweb.fnal.gov/sam/.

22



[14] The CernVM File System, CVMFS, is a network file system based on HTTP
and optimized to deliver experiment software in a fast, scalable, and reliable way,
http://cernvm.cern.ch/portal/filesystem.

[15] http://cernvm.cern.ch/portal/

[16] http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/

[17] http://research.cs.wisc.edu/htcondor/

[18] D. Box and St. Lammel, Batch Submission System For Intensity Frontier Experiments, CS-doc-
4789 (2012), http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4789.

23



24



25


